のんびり数学をする人の図

のんびり数学をする人の図です

いいことがあって嬉しさに徹夜した人

また徹夜しました、梨です。

でもこの後寝ます。

 

今日はいいことがありました。

 

一つは普段通り数学の進捗がうめたこと、これだけでハッピーです。

 

二つ目はだれでも発表できますよ的なセミナーが始動したこと。

初めのうち(4, 5月?)に僕は何回か複素関数論の発表をすることに。

でもこのセミナーのおかげで数学をやる人が増えたらいいなあと思います。

あと、僕が最近勉強しているリーマン面の話にもつながりますし。おすし。

なるべく我を殺して素材(本)を活かす方向でいきます。頑張るぞー

アティマク、複素代数幾何、それとこのセミナーに数論の勉強か、キッツイなー

でも楽しいので新年度もなんだかんだ頑張っちゃうと思います。

 

話は打って変わって、

知り合いの方から「夏までに彼女作ってダブルデートだ」的なリプが飛んできましたけど、無理ですよ(笑)

そんな急に出会いが降ってくるかい!

基本的にはフリーなので男女問わず色々な場に誘ってもらえるように少しは格好に気をつけようかな、、、それか自分から求めに行くかだなあ。

 

とまあ色々と思うところはありますが、

この後はトロンボーンの練習が待っているので流石に寝ます。

おやすみなさい、良い夢をー

 

P.S.

受験生の友人たち、お疲れ様でした。結果どうだったか教えてください。良くても悪くてもご飯、誘ってください。

 

スウィングガールズ

こんばんは。タイトルとは全く関係のない記事です。この前久々に見て感動したので、ステマです。

 

このブログについて、すでに気づいた方も多いと思いますが、僕は文才もないし内容も大して練ってないです。独り言同然です。

 

先ほどまで、コンパクトリーマン面上のホモロジー群がどんな形をしているか勉強をしていましたが、疲れたので内容を細かく書くのは控えようと思います。知りたい方は小平先生の複素解析を読むか僕に聞いてください。今度記事にするかもしれませんが。

楽しかったには楽しかったですが、辛かったです。誰かさんみたいに可愛い彼女からマフラーをもらったりしないとやってられないですね。

 

話はそれて

見返りを求めて数学をやるのはおかしい気がしますが、人間なので見返りがあったら頑張ると思います。なんの話だ。

個人的な話ですみませんが、恋愛中は数学が進むんですが、そのあと(というのはそういうことです)はしばらく滅入ってしまうので、パワポケ9のサクセスでいうところのバンザイモードみたいだなあと思いました。なんの話だ案件part2でした。

 

さらに話はそれて

さっきの話じゃないですが数学をやりやすい時とそうでない時ってありますよね。

僕の場合は移動中と早く起きれた朝ですかね、なんか頭が冴えます。午後おきだともうその時点で色々とやる気が削がれます。そういう時でもやりはしますが効率が悪いので早く寝ます。次の日に一気にやったほうがいいので。ある意味こちらの方がバンザイモードなのかもしれません。

バンザイモード大好き人間なのでやるときに一気にやってしまいたい性格なのかもしれません。多分そうだ。

 

まあでも、ほとんどどんな状況下でも結局数学をしてしまうんですよね。才能もないのになんでなんだろう。自分でもよくわからない。これが好きということなんでしょうか。まあそういうことにしておきましょう。

 

では、皆さんも自分の好きなこと頑張ってください。応援しております。

僕はこのあとアニメを見て、あれしてこれして寝ます。今日は眠いし早めに寝よう。

ぴゃー

 

P.S.

大学入試を受ける友人たち頑張ってくれ。

それと一応アニメを見ているのでそれについて個人的なあれこれです。

 

今回のメイドラゴンですが、個人的にカンナちゃんの「あめあめあ〜めあめあめあめ」で無限に悶絶し、多分アニメオリジナルの下りの滝ファフでBLっぽくて興奮して、石原夏織さんのショタでやられました。優勝しました(暇な女子大生的な優勝ではないです)

それと冴えカノ6話久々に見たけど加藤恵〜って感じで最高です。丸戸さんすごい、原作欲しくなってきた。

ケモふれが本当にわからず。悲しい。

コンパクトリーマン面

こんばんは。

 

コンパクトなリーマン面の1次元Betti数が有限であることが示されました。

こちらからの報告は以上です。

単葉型のRiemann面

僕と同じく昨日は1日が24時間より長かった方こんばんは。

その他の方、おはようございます。

完全に昼夜逆転です。

 

昨日はバレンタインデーでしたが、チョコレートがドロドロと溶けて変形していくのを想像してなんだかトポロジカルだなあなどとバカなことを考えておりました。恋はトポロジーっていう歌ありそうですね。

 

先ほどまで単葉型のRiemann面のお勉強をしておりました。お供は小平先生の『複素解析』であります。

(ここから先勉強したことをただ書いているだけなので面倒な方は最後のP.S.に是非飛んでもらって結構です。)

 

Jordanの曲線定理の結果から区分的に滑らかなJordan閉曲線γをRiemann面Rから除くと、一つの領域か、共通点を持たない二つの領域に分かれます。

(前者は例えばトーラス、後者だとC(複素平面)があります。)

 

後者の場合、つまり、

区分的に滑らかなJordan閉曲線により常にRiemann面Rが二つの領域に分割される

場合Riemann面Rを単葉型(たぶんschlichtartig)といいます。

でこの単葉型のRiemann面を分類していきたいわけです。

 

R Riemann面

C 複素平面(もしかしたら曲線Cと混同するかもしれません、あしからず)

S Riemann球面(Cに無限遠点を加えたもの)

γ 区分的に〜Jordan曲線(文脈によって閉曲線もこれで表します)

とします。

 

まずRが単一連結(普通は単連結と言うのでしょうか)なRiemann面の場合、Rは単葉型になります。

 

略証(ちゃんと書くと著作権の問題がありますので)

閉曲線γにより、Rが二つに分かれなかったと仮定します。

γの内側U+と外側U-でちょっと様子の異なるU^+上ののC^∞関数ρをとります。

具体的にはCのある近傍Vで

suppρ⊆(U+)∪C、( (U^+)∪γ )∩Vでρ=1

を満たすようなもの(bump functionの素みたいなのを使うとできます)です。

γ上のある点qをとってその点を通り、γの内側と外側に跨がる曲線λ(t)をとります。

具体的にλ(1/2)=qでλの定義域を0≦t≦1とし、λ(1)は内側、λ(0)は外側にあるとします。うまくλをとってVに入るようにしておきます。

さてRから曲線γを除いた集合は仮定から領域なのでλ(0)とλ(1)をR-γ内の滑らかな曲線λ'で結べます。

そこでλ'とλをこの順に繋いで閉曲線λ''=γ'+λを作ります。

先ほどのρの微分である1-form dρ をλ''上で積分します。単一連結性からこの値は0となるはずですが、計算結果は

ρ(λ(1))-ρ(λ(0))=1

で矛盾です。

 

と言うわけで、単一連結なRは単葉型なわけです。例えばSやその部分領域、例えばCは全て単葉型です。

この証明は微分形式のある種の異常判定性(?)みたいなものを感じました。

 

で、それはそうと、この逆は成り立つでしょうか?

つまり、単葉型のRiemann面はSの部分領域になるでしょうか?

なんとこれがなるんです!すごいですね。

 

証明はかなり大変です。

単一連結な場合のみ書きます。(といってもほとんど何も書いていません。)

まずR上のqをS上の原点に写すような局所座標p→z=z(p)を取っておいて、R上の点とS上の点をある意味で同一視しておきます。

qを含む単位円板U_0を取ってその周上で虚部が一定値を取るような関数を考えるとS(z)=z+1/zが当てはまります。(虚部はy(1-(1/(x^2+y^2)))ですからちゃんと円周上で消えます!)

これにDirichletの原理を適用するとR上の解析関数fで

f=S(z)+f_0 (f_0はU_0上の正則関数)

なるfが取れます。これはR上qを除いて正則です。

実はこのfがRをSの一つの領域に写す、1対1の双正則写像になっていて、像をSから除くと各連結成分が1点か線分になっていることがわかります。

で、ゴリゴリ場合分けして計算をすると単一連結なRはRiemann球面Sか複素平面Cか単位円板Uのいずれかに双正則同値になります。

この結果はRiemannの写像定理を含んでいます。

 

読んでみて思いましたが、やはり具体的にゴリゴリ計算する小平先生のスタイルはとても馴染みますし、図もたくさん入っていてとても助かります。

『数学の学び方』で描いてあった掛谷先生の何かの値を具体的にとる大変さやある意味での腕力の重要性を感じました。

 

まだまだこの本は読み終わってないのでまた勉強し次第何か書こうと思います。

ではありがとうございました。

 

P.S.

今日の勉強のお供はアニメでした、四畳半神話体系です。後半の7話からみました。

10話11話を見ていてなぜかGroundhog Dayを思い出しました。

英語でThe Tatami Galaxy Groundhog Dayと検索したら案の定同じことを考えた人がいました。

あの映画も名作だと思いますので見ていなかったらぜひ。

惰眠

こんばんは。

今日チョコをもらえた人、よかったですね、くたばってください。

もらえなかった人、よかったですね、ここに仲間がいます。

 

さて、朝10時になぜか眠くなり寝たんですが、起きたらバレンタインデーがほとんど終わってました。ありがとうございました。

どうやったら10時から11時間も寝られるんでしょうね。

 

明日はハーツホーンの代数幾何学ゼミですが、今日はこのまま数学と甘い夜を過ごします、多分リーマン面のお勉強をします。

 

P.S.

迷子犬と雨のビートはいいですね。先日例のアニメを改めて見て、はまってしまいました。